Resistance to genotoxic stresses in Arctica islandica, the longest living noncolonial animal: is extreme longevity associated with a multistress resistance phenotype?

نویسندگان

  • Zoltan Ungvari
  • Danuta Sosnowska
  • Jeffrey B Mason
  • Heike Gruber
  • Star W Lee
  • Tonia S Schwartz
  • Marishka K Brown
  • Nadia J Storm
  • Kristen Fortney
  • Jessica Sowa
  • Alexandra B Byrne
  • Tino Kurz
  • Erik Levy
  • William E Sonntag
  • Steven N Austad
  • Anna Csiszar
  • Iain Ridgway
چکیده

Bivalve molluscs are newly discovered models of successful aging. Here, we test the hypothesis that extremely long-lived bivalves are not uniquely resistant to oxidative stressors (eg, tert-butyl hydroperoxide, as demonstrated in previous studies) but exhibit a multistress resistance phenotype. We contrasted resistance (in terms of organismal mortality) to genotoxic stresses (including topoisomerase inhibitors, agents that cross-link DNA or impair genomic integrity through DNA alkylation or methylation) and to mitochondrial oxidative stressors in three bivalve mollusc species with dramatically differing life spans: Arctica islandica (ocean quahog), Mercenaria mercenaria (northern quahog), and the Atlantic bay scallop, Argopecten irradians irradians (maximum species life spans: >500, >100, and ~2 years, respectively). With all stressors, the short-lived A i irradians were significantly less resistant than the two longer lived species. Arctica islandica were consistently more resistant than M mercenaria to mortality induced by oxidative stressors as well as DNA methylating agent nitrogen mustard and the DNA alkylating agent methyl methanesulfonate. The same trend was not observed for genotoxic agents that act through cross-linking DNA. In contrast, M mercenaria tended to be more resistant to epirubicin and genotoxic stressors, which cause DNA damage by inhibiting topoisomerases. To our knowledge, this is the first study comparing resistance to genotoxic stressors in bivalve mollusc species with disparate longevities. In line with previous studies of comparative stress resistance and longevity, our data extends, at least in part, the evidence for the hypothesis that an association exists between longevity and a general resistance to multiplex stressors, not solely oxidative stress. This work also provides justification for further investigation into the interspecies differences in stress response signatures induced by a diverse array of stressors in short-lived and long-lived bivalves, including pharmacological agents that elicit endoplasmic reticulum stress and cellular stress caused by activation of innate immunity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Telomere-independent ageing in the longest-lived non-colonial animal, Arctica islandica.

The shortening of telomeres as a causative factor in ageing is a widely discussed hypothesis in ageing research. The study of telomere length and its regenerating enzyme telomerase in the longest-lived non-colonial animal on earth, Arctica islandica, should inform whether the maintenance of telomere length plays a role in reaching the extreme maximum lifespan (MLSP) of >500years in this species...

متن کامل

Environmental factors regulating gaping activity of the bivalve Arctica islandica in Northern Norway

Arctica islandica is the longest-living non-colonial animal known at present. It inhabits coastal waters in the North Atlantic and its annual shell increments are widely used for paleoclimatic reconstructions. There is no consensus, however, about the intra-annual timing of its feeding activity and growth. This research aims to identify the main environmental drivers of A. islandica valve gape ...

متن کامل

The Mitochondrial Genome of Arctica islandica; Phylogeny and Variation

Arctica islandica is known as the longest-lived non-colonial metazoan species on earth and is therefore increasingly being investigated as a new model in aging research. As the mitochondrial genome is associated with the process of aging in many species and bivalves are known to possess a peculiar mechanism of mitochondrial genome inheritance including doubly uniparental inheritance (DUI), we a...

متن کامل

Age, diet, and season do not affect longevity-related differences in peroxidation index between Spisula solidissima and Arctica islandica.

The susceptibility of membrane lipids to peroxidation (peroxidation index [PI]) increases with the double bond content of fatty acids and is inversely correlated to longevity in mammals, birds, and bivalve molluscs. In molluscs, membrane polyunsaturated fatty acids content can be affected by temperature, nutrition, and the individual's age. In this study, we evaluated how these three parameters...

متن کامل

Imperceptible senescence: ageing in the ocean quahog Arctica islandica.

The ocean quahog Arctica islandica is the longest-lived of all bivalve and molluscan species on earth. Animals close to 400 years are common and reported maximum live span around Iceland is close to 400 years. High and stable antioxidant capacities are a possible strategy to slow senescence and extend lifespan and this study has investigated several antioxidant parameters and a mitochondrial ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journals of gerontology. Series A, Biological sciences and medical sciences

دوره 68 5  شماره 

صفحات  -

تاریخ انتشار 2013